服务热线
18221656311
日期:2020-03-12浏览:1143次
从而产生单个细胞类型的准确信息。然而,单细胞转录组结构的根本复杂性,对于弄懂这些数据提出了一个重大挑战。
利用单细胞基因组学,我们能够选取一个组织的细胞,根据它们的表达谱,把它们分成不同的类型,从而确定可能有一系列功能作用的细胞亚型。但是,为了正确地做到这一点,我们需要处理一些混杂因素,直到现在,我们还没有可靠的方法解决这些混杂因素。
一种组织类型的样本具有固有的复杂性:一些细胞将会是新的,一些则是旧的,在任何给定的时间点上它们将处于。大多数细胞类型也有隐藏的亚型,每一种可能具有不同的功能。该研究小组开发出一种新的单细胞潜变量模型(scLVM),可让我们检测和控制隐藏的亚结构,从而使相关的生物信号更容易识别。
已经明确了如何考虑细胞周期阶段、测量噪声或生物学过程这样的因素,从而可能获得不同细胞类型和亚型中基因表达的更准确信息。将单细胞分析与统计方法相结合,可让我们确定细胞类型,否则它们仍然不被发现。
如果你所有的数据都来自于单细胞的基因表达,你就需要一种方法来识别和纠正可区分单个细胞的潜在因素,所以你可以了解其深层的生物学因素。我们的模型解释了单细胞之间的关联性,例如它们是否处于细胞周期的相同阶段,识别可能混杂的变量,并去除它们。这也使我们更容易发现新的细胞亚型——你可能不知道已存在的变量,然后一并纠正它们。
上一篇:抗体如何保存
下一篇:蛋白质的免疫染色法检测分析方法